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DEFINITIONS 

 

In this section presented only the basic definitions and notions (there are taken 

from [1-2]). For convenience of narration we will recall some of them in the right 

places and other new ones will be introduced later. 

A norm of an element x  is denoted x  and defined by ( )dist ,0x  in Euclidean 

space nR  with Euclidean distance 

 

( ) ( )
2

dist , i i

i

x y x y= −  

 

between points x , 
ny R . In an abstract situation, we can first axiomatically define 

the distance ( )dist ,0x  from x  to the origin and then the distance between any two 

points will be ( ) ( )dist , dist ,0x y x y= − . 

A norm is a real-valued function   defined on linear space X  if 

1. 0x   vector x  (nonnegativety), 

2. ax a x=  for all numbers a  and vectors x  (homogeneity) , 

3. x y x y+  +  for all vectors x  and y  (triangle inequality) and 

4. 0x =  implies 0x =  (nondegeneracy). 

A norm more general than ( )dist ,x y  is obtained by replacing the index 2 by an 

arbitrary number  )1,p  . In other words, in nR  the function 

 
1 p

p

ip
i

x x
 

=  
 
  

 

satisfies all axioms of a norm. For p = , above norm is completed with  

 

sup i
i

x x

=  

 

because  

 

lim
pp

x x
→

= . 

 
nR  provided with the norm 

p
  is denoted 

n

pR  (1 p  ).  

The space pl  of infinite sequences of numbers ( )1 2, ,...x x x=  that have a finite 

norm 
p

x  is the most immediate generalization of 
n

pR  (defined by norm in above 
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definition of norm, where i  runs over the set of naturals). More generally, the set of 

indices  I i=  may depend on the context. 

The j th unit vector in pl  is an infinite sequence ( )0,...,0,1,0,...je =  with unity 

in the j th place and 0 in all others.  

A  -field   is a nonempty family   of subsets of some set   if 

1. unions, intersections, differences and complements of any two elements of   

belongs to  , 

2. the union of any sequence  : 1,2,...nA n =  of elements of   belongs to   and 

3.   belongs to  . 

In probabilities,  -fields play the role of information sets. 

A measurable space is a pair ( ),  , where   is some set and   is a  -field of 

its subsets. A set function   defined on elements of   with values in the extended 

half-line  0,  is called  -additive measure if for any disjoint sets 1A , 2A , …  one 

has  

 

( )
11

j j

jj

A A 
 

==

 
= 

 
 . 

 

The space pL . Let ( ), ,   be any space with a  -additive measure   and let

1 p  . The set of measurable functions :f R→  provided with the norm 

 

( )
1 p

p

p
f f x d



 
=  
 
 , 1 p  , 

 

is denoted space ( )p pL L=  . In the case p =  this definition is completed with 

 

( )
( )

( )
0 \

sup inf supx
A x A

f ess f x f x


 = 

= = . 

 

The term in the middle is, by definition, the quantity at the right and is called essential 

supremum. These definitions mean that the values taken by functions on sets of 

measure zero don’t matter. An equality ( ) 0f t =  is accompanied by the caveat “almost 

everywhere” (a.e.) or “almost surely” (a.s.) in the probabilistic setup, meaning that 

there is a set of measure zero outside which ( ) 0f t = . 

A sequence of random variables  : 1,2,te t =  is called adapted to  t , where 

 : 1,2,tt =  is an increasing sequence of  -fields contained in  : 

1 n      , if 
te  is 

t -measurable for 1,2,t = .  
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 ,t te   or, shorter,  te  is a martingale difference (m.d.) sequence, if a sequence 

of integrable variables  te  satisfies 

1.  te  is adapted to  t   

and 

2. ( )1| 0t tE e − =  for 1,2,t = , where  0 , =   . 

Martingale difference (m.d.) array. Consider a family 

  , : 1,..., : 1,2,...nt nt nX t k n = = , where  nk  is an increasing sequence of integers, 

 
, 1,..., n

nt n N t k
X

 =
 are random variables and  

, 1,..., n
nt n N t k =

  are nested sub- -fields of  , 

, 1n t nt−    for all n , t . Such a family is called martingale difference (m.d.) array if 

1. ntX  is nt -measurable, 

2. ntX  is integrable, 

3. ( ), 1| 0nt n tE X − =  for all n , t . 

A family  :X T    of random variables is called uniformly integrable if 

 

lim sup 1 0
X m

m T

E X





→ 

= . 

 

Let 1 p  . For each natural n  the set 

 

 : 0, ,t n t n=  

 

is called a uniform partition. The intervals 

 

 )( 1) ,ti t n t n= −  

 

form a disjoint covering of  )0,1  of equal length 1 n . Denoting  a  as the integer part 

of a real number a , we can see that the condition 

 

tx i  

 

is equivalent to 

 

1t nx t−   , 

 

which, in turn, is equivalent to 

 

 

  1t nx= + . 
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The function   1nx +  can be called a locator because 
  1nx

x i
+

  for all  )0,1x . 

For each natural n , we can define a discretization operator 

 

: n

np p pL R →  

 

by  

 

( ) ( )1

t

q

np t
i

F n F x dx =  , 1, ,t n= , 
pF L , 

 

where q  is the conjugate of p , i.e. 

 
1 1

1
p q
+ = . 

 

Up to a scaling factor, the t  -th component of npF  is the average of F  over the 

interval ti . For a given pF L , the sequence  :npF n N   is called pL -generated 

by F . 

The interpolation operator  

 

( ): 0,1n

np pR L →  

 

is defined by 

 

( )( ) ( )
1

1
,

1

1
n

p

np t t t
t n n

w x n w x
− 

=  

 =  , nw R . 

 

If 
n

nw R  for each n  and there exists a function ( )0,1pW L  such that 

 

( )0,1
0

p
np n L

w W − → , n→ , 

 

then we say that  nw  is pL -approximable and also that it is pL -close to W . 

A linear process. Let   , : :nt nte t Z n Z    be a double-infinite m.d. array. 

Except that the set is wider, this satisfies the same requirements as a one-sided array 

  , : 1,..., : 1,2,...nt nt nX t k n = = . Fixing a summable sequence of numbers  j j Z



, 

denote  
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,nt n t j j

j Z

v e −


= , t Z . 

 

The array  : ,ntv t n Z  is called a linear process (with short-range dependence). 

We suppose that for each n N  given a vector of weights 
n

nw R . The 

convolution operator ( ): n

n p pT R l Z→  defined by 

 

( )
1

n

n t t jj
t

T w w −

=

= , j Z , 

 

where  j j Z



 is a summable sequence of real numbers.  

Sometimes it is convenient to represent nT w  as  

 

0

n

n n

n

T w

T w T w

T w

−

+

 
 

=  
 
 

, 

 

where ( ): n

n p pT w R l j n+ →  , ( )0 : 1n n

n p pT w R R j n→   , ( ): 1n

n p pT w R l j− →   are 

defined by  

 

( ) ( )n n jj
T w T w+ = , j n , 

( ) ( )0

n n jj
T w T w= , 1 j n  , 

( ) ( )n n jj
T w T w− = , 1j  . 

 

The above three operators are called trinity [1, P.55]. Naturally, nT  is called a T -

operator. 

T -decomposition. Consider the convolution operator ( ): n

n p pT R l Z→  defined by 

 

( )
1

n

n t t jj
t

T w w −

=

= , j Z . 

 

For any vector of weights 2

n

nw R  and linear process  
,nt n t Z

v


 the linear form 
n nw v  

defines T -decomposition as 

 

( ),

1 1

n n

n n nt n t j j ni nt t j ni n n i
t j Z i Z t i Z

w v w e e w e T w − −

=   = 

 = = =     . 
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The discretization and interpolation operators. Corresponding to uniform 

covering of ( )0,1  we can define uniform covering of the square ( )
2

0,1Q =  consisting 

of small squares  

 

st s tq i i=  , 1 ,s t n  , 

 

of area 2n− . For a given ( )( )2
0,1pF L , npF  is defined by  

 

( ) ( )2/

st

q

np st
q

F n F x dx =  , 1 ,s t n  , 

 

here ( )1 2,x x x=  and dx  is the Lebesgue measure on the plane. If f  is a matrix of size 

n n , the step function np f  is, by definition, 

 

2/

, 1

1
st

n
p

np st q

s t

f n f
=

 =  , 

 

here 1 is the indicator. np  and np  are called discretization and interpolation operators, 

respectively. 

Slowly varying (SV)function. A real-valued, positive, measurable function L  on 

 ),A   is slowly varying (SV) if 

 

( )
( )

lim 1
x

L rx

L x→
=  for any 0r  . 

 

A Hilbert space is a linear space that is endowed with a scalar product and is 

complete in the norm generated by that scalar product. 

Let A  be a compact linear operator in a Hilbert space with a scalar product ( ),  . 

The operator ( )
1

2H A A=  is called the modulus of A , here A
 is the adjoint operator 

of A . If A A= , then we say that operator A  is selfadjoint. The eigenvalues of H , 

denoted is , 1,2,...i = , and counted with their multiplicity, are called s -numbers of .A  

The operator A  is called nuclear if 

 

is   ( i    when A  is selfadjoint), 

 

where  i  are eigenvalues of A . 
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NOTATIONS AND ABBREVIATIONS 

 
{1,2,3,...}N =  set of positive integers 

{0,1,2,3,...}N+ =  set of positive integers including 0 (zero) 

{..., 3, 2, 1,0,1,2,3,...}Z = − − −  set of integers 

R  set of real numbers 
nR  set of n  dimensional vectors with 

elements from R  
n

pR  set 
nR  provided with the norm 

p
 , see 

definition of norm 

pl  space 
pl  of infinite sequences of 

numbers, see definition of the space 
pl  

pL  space 
pL , see definition of the space 

pL  
P

n→
→

 
convergence in probability as n→  

d

n→
→  

convergence in distribution n→  

a A  a  is an element of set (space) A  

a A  a  is not an element of set (space) A  
A B  A  subset (subspace) of B  

A B  A  subset (subspace) of B  but not equal 

 union of sets (spaces) 

 intersection of sets (spaces) 

\  relative complement of sets (spaces) 

 a
 

the integer part of a real number a  

p
f

 
function f  has a norm of space where it 

defined 
1A

 
indicator of set A  

np
 

discretization operator 

np
 

interpolation operator 

a.e.
 

almost everywhere 

cdf cumulative distribution function 

pdf probability density function 

i.i.d.
 

independent identically distributed 

m.d. martingale difference 

m.a. martingale array 

LIE Law of iterated expectations 

1-D one dimensional  

2-D two dimensional 

a.s. almost surely 
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SV slowly varying 

ti  interval  )( 1) ,t n t n− , where 1 t n   

st s tq i i=   square, where 1 ,s t n  , 
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INTRODUCTION 

 

Topicality of the research theme. Consider a model  

 

( )t ty L t u = + + , 1,...,t n= , 

 

where L  is a positive, measurable on  ),A  , 0A , and  

 

( )
( )

lim 1
x

L rx

L x→
=  for any 0r   

 

function, or, shortly, L  is a slowly varying function (SV). For the case when the errors 

 tu  are stationary, Phillips [3] obtained the asymptotic distribution of the OLS 

estimators ̂  and ̂ . 

We consider integrated errors  

 

1t t tu u v −= + , 2,...,t n= , 

 

where 1 =  under the null hypothesis and  tv  is a non-causal linear process 

 

t i t i

i Z

v c e −



= . 

 

Integrated errors and non-causal linear processes have many applications in 

statistics and econometrics. Results presented in this work can be used in derivation 

the limiting distribution of the unit root test statistic for our main regression model. 

Statement of this problem you can read in work of Uematsu [4]. This problem is open 

at present time. 

Also, as one can see we restrict our attention to models with deterministic 

regressors. Models with such regressors have many applications [5-11]. 

Another application of this research is to address the problem of early detection 

of bubbles. This is a macroeconomic problem that has direct implications for monetary 

and fiscal policies. A school headed by P. Phillips has provided a decisive component 

of the statistical procedure [12-15].  

The aims and objectives of the study. The work is devoted to studying: 

1) central limit theorems for quadratic forms of linear processes  tv ; 

2) add a couple of sequences to the list of pL -approximable sequences contained 

in Mynbaev [16]; 

3) prove Uematsu’s result [4, P.10] on the asymptotic distribution of ̂  and ̂  

under less restrictive conditions. 

The main provisions for the defense of the dissertation:  
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1) Obtained convergence of some quadratic forms used in regression analysis. 

2) Obtained central limit theorems for linear and quadratic forms.  

3) Added a couple of sequences to the list of pL -approximable sequences 

contained in Mynbaev [16, P.321]. 

4) Proved Uematsu’s result [4, P.10] on the asymptotic distribution of OLS 

estimations ̂  and ̂  under less restrictive conditions. 

5) Done Monte-Carlo simulations for the asymptotic distribution of OLS 

estimations ̂  and ̂ . 

The objects of research regression with slowly varying regressors, regression 

with asymptotically collinear regressors, non-causal linear processes, quadratic forms, 

central limit theorems. 

The research subjects pL -approximable sequences, quadratic forms of linear 

processes, central limit theorems. 

Research methods pL -approximation method of Mynbaev (see [16, P.314]), 

central limit theorems. 

Novelty of the dissertation research is that the main model with a slowly 

varying (SV) regressor in the presence of a unit root, also regression model has 

integrated errors 1t t tu u v −= + , 2,...,t n= , and  tv  is a non-causal linear process. 

Results in Section 3 generalize to the non-causal linear processes some statements 

from [17, P. 979; 18, P.172]. 

Result in Section 4 extends Mynbaev’s theorems [16, P.323] on convergence of 

quadratic forms to the case of asymmetric kernels. 

Section 5 considers a couple of new pL -approximable sequences. 

The study of the main model with integrated errors gave us the asymptotic 

distribution of ̂  and ̂ . Uematsu characterized convergence in distribution of ̂  and 

̂ , and it turned out to be very different from Phillips [3, P.565] had with stable errors. 

In Section 6 we prove Uematsu’s result [4, P.10] on the asymptotic distribution of ̂  

and ̂  under less restrictive conditions. 

Theoretical and practical significance of the research. This research constitute 

step in solving problem about unit root test. Also, has attracted number of applications 

in Econometrics and Statistics (see [4, P.2; 5, P.1048; 6, P.19; 7, P.59; 8, P.501; 9, P.1; 

10, P.1771; 11, P.1153]). 

Connection of the dissertation thesis with the other scientific research works. 

The dissertation work was implemented within the scientific projects of the program 

of grant financing of fundamental researches in the areas of natural sciences of the 

Ministry of education and science of the Republic of Kazakhstan “Prediction of rare 

events and spatial effects in financial and commodity markets” (2015-2017 years, № 

4084/GF4) and “Estimation of discontinuous densities and distribution functions in 

relation to applications in economics, finance and insurance” (2018-2020 years, 

AP05130154). 

The work approbation. Results of the work were presented and discussed at the 

following conferences [19-21] and seminars: “Actual problems of pure and applied 
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mathematics”, Almaty, 2015; Second International Conference on Statistical 

Distributions and Applications ICOSDA, Niagara Falls, Canada, 2016; XIII 

International scientific conference of students and young scientists “Lomonosov-

2017”, Astana, 2017; the city scientific seminar "Differential operators and their 

applications", Almaty, 2017; scientific seminar of Institute of mathematics, physics 

and informatics, Almaty, 2017; the city scientific seminar "Differential operators and 

their applications", Almaty, 2019. Results of this dissertation were discussed with 

probability, statistics and econometrics specialist Carlos Brunet Martins-Filho during 

the scientific training in University of Colorado at Boulder, Colorado, USA, 2016.  

Publications. Based on results of the dissertation 7 works were published: 5 

journal articles (1 in Scopus indexed Journal [22] and 4 in journals recommended by 

the Committee for Control in Education and Science of the Ministry of Education and 

Science of the Republic of Kazakhstan [23-26]) and 2 in proceedings of international 

scientific conferences [19, P.24; 20, P.56; 21, P.9]. 

Volume and structure of the dissertation. The work includes the title page, 

contents, normative references, definitions, notations and abbreviations, introduction, 

7 sections, conclusion and references. Total volume of dissertation is 72 pages, the 

work contains 5 illustrations, 1 table and 42 literature references. 

Main content of the dissertation. The introduction includes actuality of the 

research theme, aims and objectives, the main provisions for the defense of the 

dissertation, the research object and subject, methods, novelty and theoretical and 

practical significance of the research, connection of the dissertation thesis with the 

other scientific research works, the work approbation, author’s publications, and 

volume, structure and content of the dissertation thesis.  

The first section contains a more detailed introduction to the work. 

The second section gives preliminary results like useful lemmas, theorems and 

assumptions which will be used in dissertation work. 

The third section consists of research on convergence of some quadratic forms 

used in regression analysis. 

The fourth section gives central limit theorems for linear and quadratic forms with 

proofs. 

The fifth section is about slow variation and pL -approximality. Here we add a 

couple of new sequences to the list of pL -approximable sequences contained in 

Mynbaev with proofs. 

The sixth section contains the proof of the asymptotic distribution of the OLS 

estimators ̂  and ̂ . 

The seventh section contains the Monte-Carlo simulations for the OLS estimators 

̂  and ̂ . 

The conclusion lists and generalizes the main results obtained during the 

implementation of the dissertation thesis. 
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1 OVERVIEW AND BRIEFLY ABOUT RESULTS 

 

Convergence in distribution of sequences of random variables plays a central role 

in the theory of probability and statistics. Sequences of linear and quadratic forms are 

among the most important. Existence of a large number of different asymptotic 

statements is explained by the fact that different applications require different formats 

and conditions. This dissertation work concentrates on weak convergence of linear and 

quadratic forms arising in regression analysis. The book by Tanaka [18] can serve as a 

comprehensive introduction to this area.  

Central limit theorems (CLT’s) deal with convergence in distribution of linear 

forms of type 

 

1

n

nt t

t

w v
=

  as n→ , 
(1.1) 

 

where 

 

1( ,..., ) n

nv v v R=   

 

is a random vector and 

 

1( ,..., ) n

n n nnw w w R=   

 

is a deterministic vector. 

One popular approach to modeling dependence of  tv  over time is to specify it 

as a linear process defined by the convolution 

 

t i t i

i Z

v c e −



= , t Z , (1.2) 

 

where  i i Z
e


 is a sequence of random variables and  i i Z

c


 is a double-infinite 

sequence of numbers.  

If 0ic =  for 0i  , we have 

 

0

t i t i

i

v c e
+

−

=

= , t Z , 
(1.3) 

 

the process (1.2) is called causal; otherwise it is called non-causal. 

The theory critically depends on whether 
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c i

i Z

c


    (1.4) 

 

or  

 

c =   but 2

i

i Z

c


  . (1.5) 

 

If (1.4) holds we say that (1.2) is a short-memory process, if (1.5) holds we say that 

(1.2) is a long-memory process. 

Square-integrable m.d. sequences are uncorrelated and have mean zero (see proof 

of this fact in Mynbaev [1, P.31]). The generality of the m.d. assumption is often 

reduced by the necessity to restrict the behavior of the second-order conditional 

moments by the condition 

 

( )2 2

1|t tE e − = , 1,2,t = . 

 

Owing to the Law of Iterated Expectations (LIE) this condition implies 

 

( )2 2

tE e = , 1,2,t = . 

 

So, the results presented in this work hold for  t t Z
e


 martingale differences but, for 

simplicity, we assume that  

Assumption A. The innovations  te , t Z , are independent identically 

distributed (i.i.d.), satisfy 

 

0tEe = , 
2 2

e tEe    , 
4

tEe    for any t Z  

 

and the constants  ic  satisfy  

 

:c i

i Z

c


=    (short-memory). 

 

It follows that  t t Z
v


 are identically distributed. The method presented here is 

flexible in modeling  nw  but is limited to short-memory processes. We also consider 

quadratic forms of type 

 

( )n n nQ k v k v= , (1.6) 

 

where 
nk  is a deterministic n n  matrix and the random vector v  is the same as above. 
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Quadratic forms involving linear processes were considered by many authors. For 

example, Horvath and Shao [27] established approximations for quadratic forms of 

dependent random variables and obtained necessary and sufficient conditions for weak 

convergence of weighted functions of quadratic forms, Wu and Shao [28] considered 

asymptotic problems in spectral analysis of stationary causal processes, Bhansali et al. 

[29], [30] established central limit theorems for quadratic forms of causal linear 

processes with long-memory. Many authors, including Tanaka, Horvath and Shao, 

Phillips employed properties of Brownian motion in their derivations. 

All results presented in this work evolve around the pL -approximability notion 

introduced in Mynbaev [16, P.308]. The general idea behind pL -approximability is to 

represent sequences converging to deterministic vectors with functions of a continuous 

argument. It is realized as follows (for convenience here we recall the definitions). Let 

1 p  . The interpolation operator  

 

( ): 0,1n

np pR L →  

 

is defined by 

 

( )( ) ( )
1

1
,

1

1
n

p

np t t t
t n n

w x n w x
− 

=  

 =  , nw R . 

 

If 
n

nw R  for each n  and there exists a function ( )0,1pW L  such that 

 

( )0,1
0

p
np n L

w W − → , n→ , 

 

then we say that  nw  is pL -approximable and also that it is pL -close to W . 

The Section 2 contains preliminary results like useful lemmas and theorems and 

assumptions which will be used in this dissertation. 

In Section 3 we consider convergence in distribution of two quadratic forms 

arising in unit root tests for a regression with slowly varying regressor. The error term 

is a unit root process with linear processes as disturbances. We apply results from [31, 

P.348] and [1, P.122] for non-causal processes to characterize the asymptotic 

distribution of these quadratic forms. Obtained results generalize to the non-causal 

linear processes some statements from [17, P.979;18, P.172]. 

To present the results of Section 3 here, we introduce the following: 

Assumption B. The process  tu  possesses a unit root under the null hypothesis 

1 =  in  

 

1t t tu u v −= + , 
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where  tv  is the same linear process as above.  

Main results of Section 3 are the following:  

Lemma 1 (Lemma 1) in [24, P.161]. Let  

 

t j t j

j

v c e −



= , 

 

here  

 

 ie  being i.i.d. with 0iEe = , 
4

iEe   , 2 2

iEe =  

 

and  jc  is satisfying 

 

c i

i Z

c


   . 

 

Suppose Assumption B holds. Denote 

 
1

2 1

1 n t

n l t

t l

R v v
n

−

= =

 
=  

 
  . 

 

Then  

- in case 0c   we have 

 
2

2 2 2

2

d

n c i
n

i

R u c



→



 
→ + 

 
 , (1.7) 

 

where u  is standard normal random variable; 

- in case 0c =  we have 

 
2

2

2

P

n i
n

i

R c


→


→  . 
(1.8) 

 

Since convergence in distribution to a constant implies convergence in probability to 

the same constant, (1.8) is a part of (1.7).  

For a related result, see Theorem 3.7 of [17, P.979]. 

Lemma 2 (Lemma 2) in [24, P.163]. Let 

 
2

2
1 1

1 n t

n l

t l

S v
n = =

 
=  

 
  , 
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where  lv  is  

 

t j t j

j

v c e −



= , 

 

here  

 

 ie  being i.i.d. with 0iEe = , 
4

iEe   , 
2 2

iEe =  

 

and  jc  is satisfying 

 

c i

i Z

c


   . 

 

Denote  

 

c j

j

c


= . 

 

Then 

- in case 0c   we have 

 

( )
2 2

2
1

1

1

2

d

n c k
n

k

S u

k







→
=

→
  

−  
  

 , 

 

where  iu  are independent standard normal random variables; 

- in case 0c =  we have 

 

0
P

n
n

S
→
→ . 

 

Comparing to Theorem 5.12 of [18, 172] we have the same result but under less 

stringent assumptions on linear processes. 

The main subject of Section 4 is convergence in distribution of quadratic forms 

(1.6). Results concerning quadratic forms (1.6) are cast in a different format and have 

a different area of applicability than those from the papers cited above.  

The format, which links the asymptotic distribution to integral operators, was 

suggested by Nabeya and Tanaka [32, P.129]. They required the integral operators to 

have continuous symmetric kernels and the  tv  to be independent. Using the pL -
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approximability notion allowed Mynbaev [16, P.308] to get rid of the kernel continuity 

condition and replace independent  tv  by non-causal short-memory linear processes. 

Here we go one step further by lifting the kernel symmetry condition. 

Main results of Section 4 are the following: 

Theorem 1 (Theorem 2.1) in [22, P.1309]. Let  t t Z
v


 satisfy Assumption A, and 

let  

 

2 2

1
n nk K o

n


 
− =  

 
 

 

hold, where ( )( )2

2 0,1K L . If K  is nuclear, then  

 

( )
2

(1) (2)

1

d

n n e i i i i

i i

Q k c s u u


 
⎯⎯→ 

 
  , 

 

where  (1)

iu ,  (2)

iu  are systems of independent (within a system) standard normals, 
is  

are s -numbers of K  and  

 

( ) ( )(1) (2)cov , ,i j i ju u  =  for all i , j , 

 

here functions  i  and  j  are from the representation of the operator K . If K  is 

symmetric, then (1) (2)

i iu u=  for all i . 

In [26, P.34] shown analyzing variance of above CLT. 

Theorem 2 (Theorem 2.2) in [22, P.1312]. Let Assumption A hold and suppose 

that 
nf  is 

2L -close to F  and 
ng  is 

2L -close to G : 

 

2 2
0n nf F− → , 2 2

0n ng G− → . 

 

Here, , n

n nf g R  for each n , F , ( )2 0,1G L . Put  

 

n n nk f g= , ( ) ( ) ( ),K s t F s G t= . 

 

The integral operator K  with this kernel is not symmetric but it is nuclear (it is 

degenerate). Denote  

 

0 2
F F F= , 0 2

G G G= . 

 

Then 
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( )
2

1 22 2

d

n n n e i

i

Q k v k v c F G u u
 

= ⎯⎯→ 
 
 , 

 

where 
1u , 

2u  are standard normal and  

 

( ) ( ) ( )
1

1 2 0 0

0

cov ,u u F t G t dt=  . 

 

In case of CLT’s for linear forms (1.1) the method developed in [33, P.748] has 

three advantages. Firstly, all sequences arising in the theory of regressions 

 

( )t ty L t u = + +  (1.9) 

 

with slowly varying regressor ( )L t  turn out to be 
pL -approximable. Secondly, as is 

shown in [33, P.748], using 
pL -approximability allows one to bypass some difficulties 

arising in the Brownian motion method. Thirdly, as long as the linear process (1.2) is 

short-memory, to have convergence of (1) in distribution, it is enough to establish that 

 nw  is 
pL -close to some ( )0,1pW L . 

It is this last fact that lets us concentrate on establishing pL -approximability of 

certain sequences, which we do in Section 5. Here is an overview of the related results. 

Consider a polynomial trend  

 

( )1 11 ,...,k k

nf n− −=  

 

or a logarithmic trend  

 

( )ln 1,..., lnk k

nf n=  

 

and normalize it to get  

 
1/

1

p
n

p

n n nj

j

w f f
=

 
=  

 
 . 

 

Then  nw  is 
pL -approximable to 

 

( ) ( )( )
1 11 1

p kF x k p x −= − + , k N+ , 
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and  

 

1F  , k N+ , 

 

respectively, for 1 p   (Theorem 2.7.1) in [1, P.80]. Here and below 0k   is an 

integer.  

Using the fact that certain spatial matrices are 
2L -approximable, Mynbaev [34] 

gave the first derivation of the asymptotic distribution of the OLS estimator for spatial 

models that does not rely on high level conditions. 

A real-valued, positive, measurable function L  on  ),A   is slowly varying (SV) 

if 

 

( )
( )

lim 1
x

L rx

L x→
=  for any 0r  . 

 

Denote  

 

( )
( )
( )

xL x
x

L x



= , ( )

( ) ( )
( ) ( )

,
L t L n

G t n
L n n

−
= , ( )

1

,kp

ntw n G t n
−

= , 1,...,t n= . (1.10) 

 

Phillips pointed out the importance of function ( ),G t n  for regression (1.9) with stable 

errors and established a series of its properties, among them the fact that 

 

( )  , log 1 (1)G rn n r o= +  uniformly in  ,r a b  for any 0 a b   . 

 

Then under some conditions  nw  is pL -close to logk x  (Theorem 4.4.1) in [1, P.149]. 

Denote 

 

( )
( )
( )

x x
x

x







= , ( ) ( ) ( )

1

2
x x x  = +   , ( )

( )

( )

, log
,

t
G t n

nH t n
n

−
= , 

( )
1

,p

ntw n H t n
−

= , 1,...,t n= . 

(1.11) 

 

Then  nw  is pL -close to 
2log x  (Theorem 4.4.8) in [1, P.157]. 

Sequences (1.10) and (1.11) appear in the theory of regression (1.9) with 

stationary errors  tu . In case of nonstationary errors, we need three more sequences: 
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( )
( )

( )
1

,
n

j t

F t n L j
nL n =

=  , ( )
1

,kp

ntw n F t n
−

= , 1,...,t n= , (1.12) 

 

( ) ( )
1

, ,
n

j t

I t n G j n
n =

=  , ( )
1

,kp

ntw n I t n
−

= , 1,...,t n= , (1.13) 

 

( ) ( )( )
1

,
n

j t

J t n L j L
n =

= − , (1.14) 

 

where 

 

( )
1

1 n

k

L L k
n =

=  , ( )
1

,kp

ntw n J t n
−

= , 1,...,t n= . 

 

Section 5 consists of proofs (Section 3) in [22, P.1313] that (1.12) is pL -close to  

 

( )1
k

t− , 

 

(1.13) is pL -close to  

 

1
log 1

k

t t
t

 
− + 

 
 

 

and (1.14) is pL -close to  

 

1
log

k

t
t

 
 
 

. 

 

As one can see from this list, by looking at a sequence it is difficult to guess its 

pL -limit. 

As we said earlier, we restrict out attention to models with deterministic regressors 

(1.9). Most papers concentrated on quickly growing regressors, like polynomials [35-

37]. Phillips [3, P.558] was the first to consider SV regressors, of the type log t , 

log(log )t , 
1

log t
, etc. Models with such regressors have many applications, see [5, 

P.1048; 6, P.19; 7, P.1; 8, P. 501; 9, P. 1, 10, P.1772; 11, P.1156]. 
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Consider the model (9). For the case when the errors  tu  are stationary, Phillips 

[3, P.565] obtained the asymptotic distribution of the OLS estimators ̂ , ̂ .  

We consider integrated errors (Assumption B) 

 

1t t tu u v −= + , 2,...,t n= , (1.15) 

 

where 1 =  under the null hypothesis and  t t Z
v


 is a non-causal linear process. 

In Section 6 we have to find the asymptotic distribution of ̂  and ̂ . Uematsu [4, 

P.10] characterized convergence in distribution of ̂  and ̂ , and it turned out to be 

very different from what Phillips [3, P.565] had with stable errors. Section 6 consists 

of a proof Uematsu’s result ([4, P.10]) on the asymptotic distribution of ̂  and ̂  under 

less restrictive conditions. He relied on the Brownian motion method suggested by 

Phillips [3, P.565]. As illustrated in [33, P.748], the pL -approximability approach is 

more powerful than the Brownian motion method in case of problems involving SV 

functions. 

The importance of pL -approximability is explained by the next result Mynbaev 

[33, P.307] which will be applied in this dissertation work multiple times: 

Theorem A. Suppose  tv  satisfy Assumption A. If  nw  is 
2L -close to W , then 

for the sums 
1

n

n nt t

t

S w v
=

= , we have 

 

( )
1

2 2

0

0,
d

n
n

S N W t dt
→

 
→  

 
 , 

 

where 

2

2 2

e i

i

c 
 

=  
 
 , 

2 2

1e Ee = . 

Main results of Section 6 are the following: 

Lemma 3 (Lemma 6) in [23, P.94]. Denote by  

 
2

2

e j

j Z

c 


 
=  
 
 . 

 

Under Assumptions A, B and some assumptions on function L  (Assumption 5.1 in 

Section 5) the following statements are true: 

i) If 0 1  , then 
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( )
( ) 2

1

1 1
0,

3

n
d

t n
t

L t u N
n nL n


→

=

 
⎯⎯⎯→  

 
 . 

 

ii) If 0 1  , then     

 

( ) ( )
( )( ) 2

1

1 2
0,

27

n
d

t n
t

L t L u N
n nL n n




→
=

 
− ⎯⎯⎯→  

 
 . 

 

Theorem 3 (Theorem 3) in [23, P.95]. If L  satisfies Assumption A, 0 1   and 

tu  satisfies Assumption B, then 

 

( )
( )

( ) ( ) ( )

ˆ
1 12

0,
1 127

ˆ

d

n

n

n
N

L n n

n


 


 

→

 
− 

 −   ⎯⎯⎯→     −  
− 

 

. 

 

Section 7 contains Monte-Carlo simulations [25, P.87] for OLS estimators ̂  and 

̂  of the above regression model and compare this study with theoretical results 

obtained in Section 6. Simulations were done in MatLab software packages.  
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2 PRELIMINARY RESULTS AND ASSUMPTIONS 

 

In this section we introduce useful lemmas, theorems and assumptions as well as 

the main tools used in other sections to prove results. 

 

2.1 Useful lemmas and theorems 

Theorem 2.1. (Theorem 3.9.1) in [1, P.122]: Suppose that  

(i) 
2

nte  are uniformly integrable and ( )2 2

, 1|nt n tE e − =  for all t  and n ; 

(ii) the sequence  j j Z



 is summable, i.e.    ; 

(iii) the sequence  n n N
k


 is 

2L -close to some symmetric function ( )( )2

2 0,1K L  with 

the next rate of approximation  

 

2 2

1
n nk K o

n


 
− =  

 
; 

 

(iv) the integral operator K  with the kernel K  is nuclear. 

Then we can assert that  

- If 0  , then the quadratic form 

 

( )n n n n nQ k v k v= , 

 

converges in distribution to  

 

( )
2

2

i i

i

u  , 

 

where  iu  are independent standard normal and  i  are the eigenvalues of K . 

- If 0 = , then  

 

( ) 0
P

n n
n

Q k
→
→ . 

 

Theorem 2.2 (Theorem 1) in [31, P.348]: Assume that 
( ) ( )r

H x  exists and is 

continuous for all x , 4

1E   . If     , ,j jj j
K a 

 

=− =−
 satisfies ( )2,C   for some 0 

, then  
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( ) ( )( ) ( )1/2 2

1

0,
N d

l l

n n

n

N K X EK X N −

=

− → , 

 

where K  is defined in [31] and 

 

( ) ( )( )2 1

1

lim
N

l l

n n
n

n

N Var K X EK X −

→
=

 
= − 

 
 , l l

n j n j

j

X c 


−

=−

=   

 

Lemma 2.1 (Lemma 3.6.1 (iii)) in [1, P.106]: To distinguish the 2-D and 1-D 

cases, denote 
2

np  as the operator defined in 2-D and 
1

np  its 1-D cousin. If  

 

( ) ( ) ( ) ( )( )2
, 0,1pF x y G x H y L=  , 

 

then  

 

( ) ( ) ( )2 1 1

np np npst s t
F G H  =  for all ,s t . 

 

Lemma 2.2 (Lemma 2.3.2 ) in [1, P.55]: Let  j j Z



 be a summable sequence of 

real numbers, 
nT  is a T -operator. If 

    and 1 p  , then  

 

sup n
n

T   and  0supmax , ,n n n
n

T T T 
+ −  . 

 

Lemma 2.3 (Lemma 2.1.3 (ii)) in [1, P.46]: If 
pF L , 1 p  , then  

 

np pp
F F  . 

 

Theorem 2.3 [16, P.322]: Let  ,nt nte   be a m.d. array and let 
nW  be a sequence 

of n L  matrices with columns 1 ,..., L

n nw w . Suppose that  

i)  2

nte  are uniformly integrable and ( )2 2

, 1|nt n tE e − =  for all ,t n . 

ii) the sequence  :l

nw n N  is 
2L -close to 

2lF L , 1,...,l L= . 

Then  

 

( ) 2lim n n
n

V W e G
→

 =  

 

and  
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( )20,
d

n n
n

W e N G
→

 → , 

 

where G  is the Gram matrix of 
1,..., LF F . 

Theorem 2.4 (Theorem 3.5.2) in [1, P.103]): Let  ,nt nte   be a double infinite 

m.d. array and let 
nW  be a sequence of n L  matrices with columns 1 ,..., L

n nw w . Suppose 

that  

i)  2

nte  are uniformly integrable and ( )2 2

, 1|nt n tE e − =  for all ,t n . 

ii) the sequence  :l

nw n N  is 
2L -close to 

2lF L , 1,...,l L= , and 

iii) 
   . 

With the same 
nW  and G  as in Theorem 2.3, the following statements are true: 

a) If 0  , then  

 

( )( )2

0,
d

n n
n

W v N G
→

 → . 

 

b) If 0 = , then 

 

0
P

n n
n

W v
→

 → . 

 

In both cases  

 

( ) ( )
2

lim n n
n

V W v G
→

 = . 

 

Lemma 2.4 (Lemma 2.5.2 (i)) in [1, P.69]: Let  nf  be 
pL -approximable. Then  

 

sup n p
n

f   . 

 

Theorem 2.5 [38]: Let L  be defined on [ , )A  , 0A . Then L  is SV if and only 

if there exist a number B A  and functions ,   on [ , )B   with properties: 

i) ( ) exp ( ) ( )
x

B

dt
L x x t

t
 
 

= + 
 

 ; 

ii)   is bounded, measurable and the limit lim ( )
x

c x
→

=  exists (c R ); 

iii)   is continuous on [ , )B   and lim ( ) 0
x

x
→

= . 

Corollary 2.1 (Corollary 4.4.3) in [1, P.152]: If ( ),L K  =  and 1  , then  
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( )
( ) ( ) ( )

1

1
1 1 1

n
k

k
t

L t k n o
nL n


=

= − +   . 

Corollary 2.2 (Corollary 4.4.2) in [1, P.151]: If ( ),L K  =  and 1k  , then  

 

( ) ( )
1

1
lim , 1 !

n
kk

n
t

G t n k
n→

=

= − . 

 

Lemma 2.5 (Lemma 2.7.2) in [1, P.80]: Let p  . Let F  be continuous on  0,1  

and suppose that a sequence  np , with n

np R  for all n , satisfies  

 

1
max 0nt

t n

t
p F

n 

 
− → 

 
, n→ . 

 

Denote 1/ p

n nf n p−= . Then  nf  is 
pL -close to F . 

Lemma 2.6 (Lemma 7.3) in [3, P.587]: If ( )L K = , ( )K = , ( )K = , and 

( ) ( )( )n o n = , then 

 

( )( ) ( ) ( ) ( )( )
2 2 2

1

1
1 1

n

t

L t L L n n o
n


=

− = + . 

 

Lemma 2.7 (Lemma 4.6.4) in [1, P.178]: If  nv  is 
pL -close to V ,  nw  is 

pL -

close to W  and numerical sequences  na  and  nb  converge to a  and b , 

respectively, then  n n n na v b w+  is 
pL -close to aV bW+ . 

 

2.2 Assumptions 

Assumption 1. Let  , :t te F t Z  be a double-infinite m.d. array. Fixing a 

summable sequence of numbers  :jc j Z , denote 

 

t j t j

j

v c e −



= , t Z . 

 

The array  :tv t Z  is called a linear process. 

Assumption 2.  2

t t Z
e


 are uniformly integrable and 

 

( )2 2

1t t eE e F − =  for all t . 
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Assumption 3. The sequence  ,jc j Z  is summable, i.e. 
c   . 

Assumption 4. The process  tu  possesses a unit root under the null hypothesis 

1 =  in 

 

1t t tu u v −= + , 1,...,t n= , 

 

where  tv  is the same linear process as in Assumption 1. 

Assumption 5 (this assumption implies Assumptions 1 and 2). The innovations 

 t t Z
e


, are independent identically distributed (i.i.d.), satisfy  

 

0tEe = , 2 2

e tEe    , 4

tEe    for any t Z . 
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3 CONVERGENCE OF SOME QUADRATIC FORMS USED IN 

REGRESSION ANALYSIS 

 

The goal of this section is find an asymptotic distribution of two quadratic forms 

that arise in statistical applications. 

Consider the linear processes  nv  satisfying Assumptions 1, 2 and  nu  

satisfying Assumption 4. Denote 

 
1

1

2 2 1

1 1n n t

n t t l t

t t l

R u v v v
n n

−

−

= = =

 
= =  

 
    (3.1) 

 

and  

 
2

2

2 2
1 1 1

1 1n n t

n t l

t t l

S u v
n n= = =

 
= =  

 
   , n N  (3.2) 

 

with  

 

1, ,1, 0, ,0t

t n t

e

−

 
 =  

 
 

, 

1

0, ,0,1,0, ,0t

t n t

d

− −

 
 =  

 
 

, ( )1, , nv v v =  

 

we can write 

 

1

s

l s

l

v e v
=

= , 
s sv d v=  for 1, ,s n= . (3.3) 

 

So for (3.1) by (3.3) we obtain  

 

1 1 1

2 2

1 1n n

n t t t t n

t t

R e vd v v e d v v a v
n n

− − −

= =

    = = =  , 

 

where 
na  is an upper triangular matrix of size n n : 

0 1 1 1 1

0 0 1 1 1

0 0 0 1 11

0 0 0 0 1

0 0 0 0 1

na
n

 
 
 
 

=  
 
 
 
 

. 
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One can show that 
na  is 

2L -close to 

( )
1,

,
0,

s t
F s t

s t


= 


, 

 

but the degree of approximation and the integral operator with F  as a kernel are not 

good enough to apply Theorem 2.1 for convergence in distribution of 
nR . This is 

because 
na  is not a symmetric matrix. We note that 

 

( )n n nR v a v v a v  = = , 

 

so we can write 

 

( )
1 1 1

2 2 2
n n n n n

I
R v a a v v a a v v v

n n

 
    = + = + + − 

 
, 

 

here I  is the identity matrix of size n n . Denoting 

 

n n n

I
k a a

n
= + +  

 

we have 

 

1 1

2 2
n nR v k v v v

n
 = − . (3.4) 

 

Let ( ), 1K s t   on ( )
2

0,1 . Then 

 

( ) ( )2

1 1 1
0

ij

n nij ij

q

k K n dx
n n n

− = − = − =  for all 1 ,i j n  , 

 

here 
2n  is a discretization operator. Thus, 

 

2 2
0n nk K− = . 

 

The integral operator K  is associated with K  
 

( )( ) ( )
1

0

f x f t dt= K  
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has only one non-zero eigenvalue 1 = ; the corresponding eigenspace consists of 

constants and is one-dimensional, all other eigenvalues are zero. By Theorem 2.1 we 

can assert that 

1. If 0c  , then 

 

( )
2 2

d

n c
n

v k v u
→

 → , (3.5) 

 

where u  is a standard normal, or 

2. If 0c = , then 

 

0
P

n
n

v k v
→

 → . (3.6) 

 

To deal with the second term in (3.4), we apply a CLT from [31, P.348]. Suppose 

a function H  has r -th derivative and let 

 
( ) ( ) ( ) ( )sup
r r

y

H x H x y


= + , 0  . 

 

Definition 3.1. The triplet     , ,j jH c e  is said to satisfy condition ( ),C r   if 

there exists a number ( )0,   such that  

1. 
( ) ( )r

H x  exists and is continuous for all x R , 

2. For all x R  

 

( )

4

sup
r

i i
I i I

E H x c e
 

  
+    

  
  

 

(3.7) 

 

where supremum is taken over all subsets I Z . 

Let  ie  be independent identically distributed (i.i.d.) and satisfies Assumption 5. 

Put ( ) 2H x x= . Then (3.7) is trivially satisfied with 2r = . By Theorem 1  

 

( )2 2 2

1

1

1
( ) 0,

n d

t t
n

t

v Ev N
n


→

=

− → , (3.8) 

 

where 

 

2 2 2 4

1

1

1
lim

n

t i
n

t i

Var v c
n

 
→

= 

 
= = 

 
  . 
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From (3.8) we have 

 

( )2 2 2 2

1 1 1

1 1 1 1n n n

t t t t

t t t

v v v v Ev Ev
n n n n= = =

 = = − +    

 

( ) ( )2 2 2 2

1 1 1

1 1 1 1
1

n n n

t t t P t

t t t

v Ev Ev o Ev
n nn n = = =

 
= − + = + 

 
   . (3.9) 

 

Since 

 
2 2 2

,

t i j t i t j e i

i j i

Ev E c c e e c− −

 

= =  , 

 

(3.9) implies 

 

2 21
lim

P

i
n n

i

v v c
n


→ →



 →  . (3.10) 

 

From (3.4), (3.5), (3.6) and (3.10) we obtain the following statement. 

Lemma 3.1. Let  

 

t j t j

j

v c e −



= , 

 

here  i i Z
e


 being i.i.d. with 0iEe = , 4

iEe   , 2 2

e iEe =  and  j j Z
c


 is summable 

sequence of numbers. Suppose Assumption 4 holds. Denote 

 

1

2

1 n

n t t

t

R u v
n

−

=

=  . 

 

Then  

- in case 0c   we have 

 
2

2 2 2

2

d

n c i
n

i

R u c



→



 
→ + 

 
 , (3.11) 

 

where u  is standard normal random variable; 

- in case 0c =  we have 
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2
2

2

P

n i
n

i

R c


→


→  . (3.12) 

 

Since convergence in distribution to a constant implies convergence in probability to 

the same constant, (3.12) is a part of (3.11).  

For a related result, see Theorem 3.7 of [17, P.979]. 

For (3.2) by using (3.3) we have 

 

2 2
1 1

1 1n n

n t t t t n

t t

S e ve v v e e v v b v
n n= =

    = = =  , (3.13) 

 

where 
nb  is a symmetric matrix of size n n : 

 

1 2 2 1
1 1 1 1 1

1 1 2 2 1
1 1 1 1 1

2 2 2 2 1
1 1 1 1 11

2 2 2 2 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

n

n n

n n n n

n n

n n n n n

n n

b n n n n n
n

n n n n n

n n n n n

n n n n n

n n n n n

− − 
− − − − 

 
− − − − − − −

 
 

− −
 − − − − −

=  
 
 

− − − − − 
− − − − −

 
 

− − − − − − − − − − 
 

. 

 

In other words, 

 

, 1

1 1 1
1 max ,

n

n

i j

i j
b

n n n
=

  − −  
= −    

   
. 

 

For given ( )
2

, 0,1s t  choose 1 ,i j n   such that 

 

1i i
s

n n

−
  , 

1j j
t

n n

−
  . 

 

It is easy to see that nb  is 
2L -close to a symmetric function 

 

( )  , 1 max ,B s t s t= − . 
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We need to know the rate of approximation. For this consider 

 

 ( )2

1 1 1
( ) 1 max , 1 max ,

ij

ij

n n ij

q

i j
b B n s t dsdt

n n n


 − −  
− = − − −  

  
  

 

 ( )2 1 1 1
1 max , 1 max ,

ijq

i j
n n s t dsdt

n n n

  − −  
=  − − −   

   
  

 

  2

1 1 1
max , max ,

ijq

i j
n s t dsdt

n n n

 − −  
 −   

  
 . 

 

Thus, 

 

( )
,

22

2 2 22
, 1

1
i j

n

n n n n ij
i j

b B b B o
n

 
=

 
− = − =  

 
 . 

 

The integral operator K  is associated with B  in the following way 

 

( )( ) ( )
1

0

, ( )f t B x t f x dx= K  

 

and let us consider the integral equation for   and ( )f t  

 

( ) ( ) ( )
1

0

,f t B x t f x dx=  , 

 

here   is the eigenvalue of the kernel ( ),B s t ; the corresponding solution ( )f t  is an 

eigenfunction for the eigenvalue  . According to [18, P139] eigenvalues of kernel 

( ),B s t  are 

 

2

1

1

2

k

k





=
  

−  
  

, k N , 

 

with multiplicity 1 and corresponding eigenvectors are 
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( ) cosk kf t c t=  with 0c  . 

 

By Theorem 2.1 we can assert that 

1. If 0c  , then 

 

( )
2 2

1

d

n c i i
n

i

v b v u 


→
=

 →  , (3.14) 

 

where  i i N
u

+
 are independent standard normal random variables, or 

2. If 0c = , then 

 

0
P

n
n

v b v
→

 → . (3.15) 

 

From (3.13), (3.14) and (3.15) we obtain the next statement. 

Lemma 3.2. Let 

 
2

2
1 1

1 n t

n l

t l

S v
n = =

 
=  

 
  , 

 

where  l l Z
v


 as in Assumption 1. And let Assumption 2 hold. Denote  

 

c j

j

c


= . 

 

Then 

- in case 0c   we have 

 

( )
2 2

2
1

1

1

2

d

n c k
n

k

S u

k







→
=

→
  

−  
  

 , 

 

where  iu  are independent standard normal random variables; 

- in case 0c =  we have 

 

0
P

n
n

S
→
→ . 

 

Comparing to Theorem 5.12 of [18, P.172] we have the same result but under 

less stringent assumptions on linear processes. 
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4 CENTRAL LIMIT THEOREMS FOR LINEAR AND QUADRATIC 

FORMS 

 

The main subject of this section is convergence in distribution of quadratic forms 

(1.6). For this let us recall some definitions from Definitions section and we need some 

facts from the theory of operators in Hilbert spaces (all of them can be found in [2]). 

Let A  be a compact linear operator in a Hilbert space with a scalar product ( ),  . The 

operator ( )
1

2H A A=  is called the modulus of A , here A
 is the adjoint operator of 

.A  If A A= , then we say that operator A  is selfadjoint. The eigenvalues of H , 

denoted 
is , 1,2,...i = , and counted with their multiplicity, are called s -numbers of A

. U  denotes a partially isometric operator that isometrically maps the range ( )R A  

onto the range ( )R A . Then we have the polar representation A UH= . Denote ( )r A  

the dimension of the range ( )R A  ( ( )r A   ). 

Let  j  be an orthonormal system of eigenvectors of H  which is complete in 

( )R H . Then, we have the representation 

 

( )
( )

1

,
r A

i i i

i

Ax s x U 
=

=  

 

or, denoting 
i iU = , 

 

( )
( )

1

,
r A

i i i

i

Ax s x  
=

= , (4.1) 

 

where  i  and  i  are orthonormal systems, 

 

i i iH s = , lim 0i
i

s
→

= . 

 

In particular, when A  is selfadjoint,  i  are eigenvectors of A  and 

 

i is = , 

 

where  i  are eigenvalues of A . 

Let us apply (4.1) to an integral operator 

 

( )( ) ( ) ( )
1

0

,f s K s t f t dt= K , ( )2 0,1f L , 
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with a square-integrable kernel ( )( )2

2 0,1K L . From 

 

( ) ( ) ( ) ( ) ( ), i i i

i

K s t f t dt s f t t dt s =   

 

we get 

 

( ) ( ) ( ) ( ), 0i i i

i

K s t s s t f t dt 
 

− = 
 

  a.e. 

 

Because f  is arbitrary, we have the decomposition 

 

( ) ( ) ( )
( )

1

,
r A

i i i

i

K s t s s t 
=

= , (4.2) 

 

where 
is  and 

i  are, respectively, the eigenvalues and eigenvectors of ( )
1

2
K K  and 

 

j jU = . 

 

The fundamental idea of Nabeya and Tanaka [32] was to postulate that the 

matrices 
nk  in (1.6) approach in some sense a function K  on ( )

2
0,1  and express the 

limit properties of ( )n nQ k  in terms of the properties of the associated integral operator 

K .  

Let us recall definition of nuclear operator. 

Definition 4.1. The operator K  is called nuclear if 

 

is   ( i    when K  is selfadjoint). 

 

 

Nabeya and Tanaka [32, P.219] required K  to be continuous and symmetric and 

K  to be nuclear. Mynbaev [16, P.307] used 
pL -approximability, which allowed him 

to relax the continuity assumption and replace i.i.d.  t t Z
v


 with linear processes. Here 

we develop his approach further by lifting the symmetry condition. 

Definition 4.2. Let ( )( )2

2 0,1K L . For each natural n  and 1 p  , we define an 

n n  matrix 
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( ) ( )
1

2 1

1 1

,

i j

n n
p

np ij
i j

n n

K n K s t dsdt

 
− 

 

− −

=   , 1 ,i j n  . (4.3) 

 

We say that the sequence  nk  is 
2L -close to K  if 

 

( )

1

2
2

2 2 2
,

0n n n nij
i j

k K k K 
 

− = − → 
 
 . 

 

Unlike the one-dimensional case, where 
2L -approximability of  nw  is enough 

to have convergence in distribution, in the two-dimensional case one has impose a 

stronger condition on the rate of approximation. Mynbaev [1, P.122] proposed two 

such conditions. In Theorem 3.9.1 the conditions on the innovations are weaker ( 2

te  

must be uniformly integrable) and the requirement on the rate of approximation 

 

2 2

1
n nk K o

n


 
− =  

 
 

(4.4) 

 

is stronger than in Theorem 3.9.7, where the fourth moments 4

tEe  must exist but the 

rate of approximation 

 

2 2

1
n nk K o

n


 
− =  

 
 

(4.5) 

 

is less restrictive. For simplicity, we adhere to Assumptions 3 and 5, which allows us 

to use (4.5), remembering that in cases (3.4) and (3.5) Mynbaev’s conditions on  t t Z
v


 

from Theorems 3.9.1 and 3.9.7 can be repeated word for word. 

Theorem 4.1. Let  t t Z
v


 satisfy Assumption 5 and let Assumption 3 and (4.5) 

hold. If K  is nuclear, then  

 

( )
2

(1) (2)

1

d

n n e i i i i

i i

Q k c s u u


 
⎯⎯→ 

 
  , 

 

where  (1)

iu ,  (2)

iu  are systems of independent (within a system) standard normals, 

 is  are s -numbers of K  and  

 

( ) ( )(1) (2)cov , ,i j i ju u  =  for all i , j . 
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If K  is symmetric, then (1) (2)

i iu u=  for all i . 

Proof. We can exclude symmetric K  covered in Mynbaev [1, P.126]. The proof is 

similar to that of Theorem 3.9.7 (all references are to Mynbaev [1]), so we indicate 

only the modifications. (4.2) above is analogous to equation (3.38), which holds in the 

symmetric case. Hence, the initial segment of (4.2) is  

 

( ) ( ) ( )
1

,
L

L i i i

i

K s t s s t 
=

= . 

 

Subtracting from (4.2) its initial segment and applying Lemma 2.1 we get  

 

( ) ( ) ( )2 2 1 1

2 2 2 2,n n L i n i n is t s t
i L

K K s     


− = , (4.6)  

 

where 2

2 2n n =  is the two-dimensional discretization operator defined in (4.3) and 
1

np  

is its one-dimensional version defined by 

 

( ) ( )
1

1
1

1

i

n
p

np i
i

n

F n F x dx
−

−

=  , 1,...,i n= . 

 

Combining (1.6) and (4.6) we have  

 

( ) ( ) ( ) ( )2 2 1 1

2 2 2 2

, 1

n

n n n n L i n i s n i ts s
i L s t

Q K Q K s v v     
 =

− =   

 

( ) ( )1 1

2 2i n i n i

i L

s v v   


    
=    

   
 . (4.7) 

 

By Section 3.3.5 about the T-decomposition for means of quadratic forms 

 

( ) ( )1 1

2 2n i n iE v v   
       =       
 

 

 

( ) ( ) ( )2 0 1 0 1 1 1 1 1

2 2 2 2 2 2, , ,e n n i n n i n n i n n i n n i n n iT T T T T T            − − + += + +  

 

(applying the Cauchy-Schwarz inequality) 
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2 0 1 0 1 1 1

2 2 2 22 2 2 2e n n i n n i n n i n n iT T T T        − − +


 

 
1 1

2 22 2n n i n n iT T   + + +


 

 

(using boundedness of the operators 0

nT , 
nT − , 

nT + , see Lemma 2.2) 

 

( )
2 1 1

2 22 2
3 e c n i n i       

 

(using boundedness of the operators 1

2n , see Lemma 2.3) 

 

( ) ( )
2 2

2 2
3 3e c i i c     = . (4.8)  

 

By nuclearity of K  from (4.7) - (4.8) we have 

 

( )( ) ( ) ( )
22 2

2 2 3 0n n n n L e c i

i L

E Q K Q K s   


−  → , L→ . 

 

The conclusion is the same as in Section 3.9.3: 

 

( ) ( )2 2

2 2lim 0n n n n L
L

p Q K Q K 
→

 − =
 

 uniformly in n . 

 

Turning to the analog of Section 3.9.4, note that by selecting  

 

2

l

n n lw  = , 1,...,l L= ; 
2

l

n n lw  = , 1,...,2l L L= + , 

 

we satisfy condition (ii) of Theorem 3.5.2 with  

 

l lF = , 1,...,l L= ; 
l lF = , 1,...,2l L L= + . 

 

With ( )1 2,..., L

n n nW w w=  by Theorem 2.4 we have 

 
2

0,d

n e i L

i

W v N c G
  

 ⎯⎯→      
 , n→ , (4.9) 

 

where  
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1 1 1

1 1

1 1 1 1 1 1

1 1

, , , ,

, , , ,

, , , ,

, , , ,

L L

L L L L L L

L

L L

L L L L L L

G

       

       

       

       

 
 
 
 

=  
 
 
 
 
 

. 

 

Since both systems  i ,  i  are orthonormal, this can be written as 

 

L

L

L

I H
G

H I

 
=   

, 

 

where the identities are of size L L  and 
LH  has elements ( ),i j  . It follows that (4.9) 

is equivalent to 

 
( )

( )

1

2

d

n e in
i

u
W v c

u


→

 
 ⎯⎯⎯→  

 
 

 , (4.10) 

 

where ( )1
u , ( )2

u  are standard normal vectors and  

 
( ) ( )( )1 2

cov , Lu u H= . 

 

Similarly to equation (4.7), 

 

( ) ( ) ( )2 1 1

2 2 2

1

L

n n L i n i n i

i

Q K s v v    
=

 
= . 

 

This is a continuous function of the vector at the left of (4.10). By the continuous 

mapping theorem then 

 

( )
2

2 (1) (2)

2

1

L
d

n n L e i i i in
i i

Q K c s u u 
→

=

 
⎯⎯⎯→ 

 
  . 

 

Establishing the analog of 3.9.4 is complete.  

3.9.6 goes through with obvious changes. 3.9.10 is not impacted by the fact that 

K  is not symmetric. The proof of the generalization of Theorem 3.9.7 is complete. # 
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Remark. We use this opportunity to comment on the relationship between 

Theorem 2.4 used in the above proof and a classical result [39]. The conditions on the 

stochastic and deterministic parts of the process in this work are more general than in 

Theorem 3.5.2. However, there is no analysis of the limit of the normalizing sequence 

 n . In our results, it is the main selling point, without which the statement on the 

covariance structure in Theorem 4.1 would be impossible. On a related note, in [40] 

there is analysis of the normalizing sequence but the focus is different: the variance of 

the limit distribution is tied to the spectral density.  

Recall the discussion about rates of approximation (4.4), (4.5). An interesting 

question is: under what conditions on matrices 
nk  and the kernel K  just 

( )2 2
1n nk K o− =  would be enough for the CLT hold? The answer contained in the 

next theorem means that it is true when essentially the two-dimensional case can be 

reduced to the one-dimensional. 

Theorem 4.2. Let Assumptions 1 and 3 hold and suppose that 
nf  is 

2L -close to 

F  and 
ng  is 

2L -close to G : 

 

2 2
0n nf F− → , 2 2

0n ng G− → . (4.11) 

 

Here, , n

n nf g R  for each n , F , ( )2 0,1G L . Put  

 

n n nk f g= , ( ) ( ) ( ),K s t F s G t= . 

 

The integral operator K  with this kernel is not symmetric but it is nuclear (it is 

degenerate). Denote  

 

0 2
F F F= , 0 2

G G G= . 

 

Then 

 

( )
2

1 22 2

d

n n n e i

i

Q k v k v c F G u u
 

= ⎯⎯→ 
 
 , (4.12) 

 

where 
1u , 

2u  are standard normal and  

 

( ) ( ) ( )
1

1 2 0 0

0

cov ,u u F t G t dt=  . 

 

Proof. In the proof of Theorem 4.1 we showed how to deal with the fact that K  is not 

symmetric. Here we show how to lift the restriction (4.5). By Lemma 2.1  
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( ) ( ) ( )2 1 1

2 2 2n n nst s t
K F G  = . 

 

For an n n  matrix A  denote  

 

( ) ( )
1

2 2

n ng A E v Av =
 

. 

 

Since ( )g A  is a seminorm, we have  

 

( ) ( )( )2 1 1

2 2 2n n n n n ng k K g f g F G  
 − = − 
 

 

 

( )( ) ( )( )1 1 1

2 2 2n n n n n ng f F g g F g G  
  − + − 
 

. (4.13) 

 

Here the matrices  

 
1

1 2n nA f F= − , 1

2 2nA F=  

 

are just columns and the matrices  

 

1 nB g= , ( )1

2 2n nB g G 
= −  

 

are just rows. Applying the last inequality of Section 3.9.9, we have  

 

( )
2 2 2

2 2n i i n i iE v A B v c A B  , 1,2i = , 

 

which is just another way of writing  

 

( )( )1 1

2 2 22n n n n n ng f F g c f F g −  − , 

 

( )( )1 1 1 1

2 2 2 22 2n n n n n ng F g G c F g G   
 

−  − 
 

. (4.14)  

 

By Lemma 4.3 and Lemma 2.4  

 

sup n
n

g    and 
1

2sup n
n

F   , 
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so (4.11), (4.13), (4.14) imply  

 

( )2

2 0n ng k K− → . 

 

This gives Equation (3.50) in [1, P.123]. The rest of the proof of convergence in 

distribution is the same. 

We need to justify the format of the limit distribution. The operators K  and 


K  

are given by 

 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ), ,f s K s t f t dt F s G t f t dt F s G f= = = K  (4.15)  

 

and  

 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ), ,g u K s u g s ds G u F s g s ds G u F g = = = K . (4.16) 

 

Hence, 

 

( )( ) ( )( )
2

2
,f u G u G f F =K K . 

 

If f  is an eigenvector of 


K K , it should be proportional to G , i.e.  

 

f cG= , 

 

and from the above  
 

f f =K K  

 

implies  

 

( ) ( )
2 2

2 2
G u c G F cG u= . 

 

This gives  

 
2 2

2 2
G F =  

 

and  

 

1 2 2
s G F= . 
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The corresponding eigenvector is 
0G . The subspace 

1H  of functions proportional to G  

is one-dimensional. Let 
1f H⊥ , that is,  

 

( ), 0G f = . 

 

(4.15) - (4.16) show that  

 

0f =K K  

 

on all such functions. Hence, 0js =  for 1j  . From (4.15) - (4.16) we see that the 

range ( )R 
K  is spanned by  

 

0 2
G G G=  

 

and the range ( )R K  is spanned by  

 

0 2
F F F= . 

 

The required partially isometric operator obtains by setting  

 

0 0UG F= . 

 

Thus, (4.12) follows from Theorem 4.1, where  

 

1 2 2
s G F= , 0js =  for 1j  , 

 
(1)u , (2)u  are standard normal 

 

and 

 

( ) ( ) ( )(1) (2)

1 1 0 0cov , , ,u u F G = = . 

# 
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5 SLOW VARIATION AND pL -APPROXIMABILITY 

 

The main goal of this section is prove pL -approximations of some new sequences 

introduced in Overview.  

First, let us recall the definition of SV functions and consider examples.  

Definition 5.1. A positive measurable function on ),A  , 0A , is slowly varying 

(SV) if 

 

( )
( )

lim 1
x

L rx

L x→
=  for any 0r  . (5.1) 

 

Examples of such functions are ( )1 logL x x=  and ( ) ( )2 log logL x x=  because  

 

( )
( )

1

1

log log
1

log x

L rx r x

L x x →

+
= → , 

 

( )
( )

( )
( )

( ) ( )( )
( )

2

2

log log log 1 log loglog log log
1

log log log log x

x r xL rx r x

L x x x →

+ ++
= = → . 

 

Similarly, ( )3 1 logL x x= and ( ) ( )4 1 log logL x x=  are SV. The function ( )5

aL x x= , 

0a  , is not SV because  

 

( )
a a arx x r=  

 

does not tend to 1 unless 1r = .  

The seemingly innocuous condition (5.1) in fact entails many strong properties. 

We shall be using, often without explicitly mentioning, the following standard 

properties of SV functions [38]: 

a) If L  is SV, then aL  is SV for any a R . 

b) If L  and M  are SV, then L M+  and LM  are SV. 

c) If L  is SV, then (5.1) as actually uniform in  ,r a b , for any 0 a b    

(uniform convergence theorem). 

d) If L  is SV, then ( )x L x → , ( ) 0x L x− →  for any 0  . 

If L  is SV, then by the above Karamata theorem there exist a number 0B A   

and functions  ,   on [ , )B   such that 

 

( ) exp ( ) ( )
x

B

dt
L x x t

t
 
 

= + 
 

 , (5.2) 
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here   is bounded, measurable, the limit lim ( )
x

x
→

 exists and is finite,   is continuous 

on  ),B   and lim ( ) 0
x

x
→

= . 

Following Phillips [3, P.560], we make a simplifying assumption that  

 

const = . 

 

Phillips argues that asymptotically this does not affect regression estimation because 

the asymptotic behavior of representation in Theorem 2.5 (i) is equivalent to that with

const = . To this justification we can add that if   is good in the sense that   is 

continuously differentiable and  

 

lim ( ) 0
x

x x
→

 = , 

 

then the Phillips assumption is satisfied. Because if   is continuously differentiable, 

then 

 

( ) ( ) ( ) ( ) ( ) ( )exp exp

x x x

B B B

dt dt
L x x t t dt B t

t t
    
   

= + = + +   
   

    

 

( ) ( ) ( )( )exp

x

B

dt
B t t t

t
  
 

= + + 
 

 . 

 

So, if additionally  

 

lim ( ) 0
x

x x
→

 = , 

 

we have a new representation of the same function L  with a constant  . Thus, (5.2) 

can be equivalently written as 

 

( ) exp ( )

x

L

B

dt
L x c t

t


 
=  

 
  (5.3) 

 

with a new continuous function   on  ),B   such that lim ( ) 0
x

x
→

=  [1, P.133]. When 

(5.3) holds, we write ( )L K =  in this case, omitting the constant 
Lc  from the notation. 

The function in this representation is called an  -function of L . 
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Further,   can be extended to the segment  0, B  in such a way that the integral 

( )

0

B t
dt

t


  exists (e.g., one can set   equal to 0 in the neighborhood of 0 and interpolate 

continuously between that neighborhood and  ),B  ). This will amount to redefining 

L  on  0, B , which does not matter asymptotically because only a finite number of 

regression equations are affected. In any case, L  can be considered continuous and 

positive on  )0, . From now on we assume that such adjustments are made. 

For some expansions we need to assume that ( )x  is also SV and   has 

Karamata representation 

 

( ) exp ( )

x

B

dt
x c t

t
 

 
=  

 
  for x B  

 

for some (possibly negative) constant c , where   is continuous and ( ) 0x →  as 

x→ . In such cases we also write ( )K = , remembering that   can be negative. 

The number of different conditions in this theory may be daunting. To reduce it, in 

some cases we assume a little more than is required by a puristic approach. 

So, we understand that it is convenient to assume that L  is continuous and does 

not vanish on  )0, , which can be achieved by properly extending the function   on

 )0, B .  

For ( )L K = , 

 

( )
( )
( )

0
xL x

x
L x




= →  as x→  

 

Using this formula we calculate and collect in Table 1 below expressions for   and   

in the sequence ( ) ( ),L K K  = = , (the role of the function 

 

( ) ( ) ( )( )
1

2
x x x  = + ). 

 

is disclosed in Mynbaev’s book (Section 4.2.7) in [1, P.142]. In Table 5.1 we denote

( ) ( )1 logl x x= , ( ) ( )( )2 log logl x x=  and assume 0   it is the (Table 4.1) in [1, P.134]. 

The table contains the functions of most practical interest against which the plausibility 

of new assumptions should be checked. 

Expressions arising in regression statistics involve values ( )L t  for 1 t n  . For a 

fixed  )0,1  , the values ( )L t  with n t n    can be handled using the uniform 
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convergence theorem. The values ( )L t  with 1 t c  , for any 0c  , asymptotically do 

not present a problem because of continuity of L . To cover the remaining values ( )L t  

with c t n  , we need one more condition. Let us call a remainder a positive function 

  on  )0,  with properties: 

i)   is non-decreasing and lim ( )
x

x
→

=  , 

ii) there exist positive numbers  , X  such that ( )x x−
 is non-increasing on 

 ),X  . 

L  is called SV with remainder   if for any 0r   instead of (5.1) one has 

 

( )
( ) ( )

1
1

L rx
O

L x x

 
= +  

 
, x→ . 

 

Table 5.1 – Basic SV functions 

L        L  

1 1L l=  

1l


 

1

1

l
−  

1

1 1

2 l

 −
 

( ) 2

1

1

2
l

  −−
 

2 2L l=  

1 2

1

l l
 

2

1 2

1 l

l l

+
−  

1

1

2l
−  2

1

1

2l
−  

3

1

1
L

l
=  

1

1

l
−  

1

1

l
−  

1

1

l
−  3

1

1

l
 

4

2

1
L

l
=  

1 2

1

l l
−  

2

1 2

1 l

l l

+
−  

2

1 2

2

2

l

l l

+
−  

2

3 3

1 2

2

2

l

l l

+
 

 

The following result allows us to handle the values ( )L t  with c t n  : 

Lemma 5.1 [38, P.102]: If L  is SV with remainder  , then for any b   there 

exist constants 0bM   and 
bB B  such that 

 

( )
( )

( )1 /b

b

L rx
M r x

L x
−−   for 

bx B , 1bB
r

x
  . 

 

Assumption 5.1 (on SV function L ). a) ( )L K = , that is, (5.2) holds, with   

described after (5.3). 

b)   is SV in the general sense (5.1). 

c) There exists a remainder   with properties i), ii) above such that for some 0c   

holds the following: 
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1 1
( )

( ) ( )
x

c x x 


 

   for all x c . (5.4) 

 

We write ( ),L K  =  to mean that L  satisfies Assumption 5.1. Note that all 

practically important SV functions from Table 5.1 satisfy this assumption with  

 

( )
( )
( )

xL x
x

L x



= , ( )

( )
1

x
x




=  

 

and number 0   which can be chosen arbitrary close to zero. For our final results on 

pL -approximability, on top of Assumption 5.1 we shall have to impose more 

conditions, and all of them hold for functions from Table 5.1. 

Let us consider the function F  defined in (1.12). Let  a  denote the integer part 

of a R . Now we can proceed with our new results contained in the next lemmas and 

theorems: 

Lemma 5.2. If ( ),L K  = , 1  , then  

a)  

 

 ( ) ( ), 1 1F rn n r o= − + , n→ , 

 

uniformly in 
1

,r 


 
 
 

 for any ( )0,1  . 

b) For all large n  we have  

 

 ( ),F rn n c  uniformly in ( 0,r   

 

with a constant c  independent of ( 0,1 / 2  . 

 

Proof. a) 
1

,r 


 
 
 

 implies  

 

n
n rn


  . 

 

Since  nr nr = +  with 0 1  , we have for all large n  

 

  11 1 1 1

2

nr

n n n

  


 

−+ +
 −   −  . (5.5) 
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By Corollary 2.1 

 

( )
( ) ( ) ( )

1

1
1 1 1

n

t

L t n o
nL n


=

= − +   , (5.6) 

 

so  

 

 ( )
( )

( ) ( )
  1

1 1

1
,

rnn

t t

F rn n L t L t
nL n

−

= =

 
= − 

 
   

 

( ) ( )( )
 ( )  ( )

( )
 ( ) ( )( )

1 1
1 1 1 1 1 1 1

rn L rn
n o rn o

nL n
 

− −
= − + − − − +       . (5.7) 

 

According to the definition of   we can continue (5.7) and have  

 

 ( ) ( )( )
 ( )  ( )

( )
( )( )

1 1
, 1 1 1 1

rn L rn
F rn n o o

nL n

− −
= + − + . (5.8) 

 

The ( )1o  here is uniform in r  because by (5.5)   1
2

rn n


−  . By the uniform 

convergence theorem (5.7) also implies  

 

 
( ) ( )

1
1 1

rn
L n L n o

n

 −
 = + 

 
. 

 

Hence, continuing (5.8)  

 

 ( ) ( )( )
   ( )

( )
( )( ) ( )

11
, 1 1 1 1 1 1

L rnrn
F rn n o o r o

n L n

−−
= + −   + = − +  

 

uniformly in r . 

To prove b) consider two cases. 

Case 1. ( )1bB n r +   , where 
bB  is the constant from Lemma 5.1. Obviously, 

 

 ( )
( )
( )

( )
( )

( )
( )

  1

1 1 1

,
b

b

rnBn

t t t B

L t L t L t
F rn n

nL n nL n nL n

−

= = = +

 + +   . (5.9) 
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By (5.6), the first term at the right is ( )1 1o+ . L  is continuous and bounded on  0, bB , 

so 

 

( )
( ) ( )1

0
bB

b

t

L t cB

nL n nL n=

 → , n→ . (5.10) 

 

The first term is the most difficult to bound. From  

 

 1 1bB t rn+   −  

 

and  

 

1

2
r    

 

we have  

 

 ( )1 1bB n t n rn n r  −   , 

 

so by Lemma 5.1 

 

( )
( )

 

( )

   1 1 1

1 1 1

1 1
1 1

b b b

rn rn rn

t B t B t B

t
L n

L t n

nL n n L n n

− − −

= + = + = +

 
 

  − +    

 

( )
 ( )

[ ] 1

1

1
1

b

brn

b
b

t B

M t
rn B

n n n n

−−

= +

 
 + − − 

 
 . (5.11) 

 

Recall that 0 1   and the number b   is arbitrarily close to  , so we can choose

0 1b  . Geometrically it is obvious that for any integer 0 a N   

 

1 0

.

N NN
b b b

t a a

t t dt t dt− − −

= −

     (5.12) 

 

and therefore 
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     ( )
111

1 0

1

1
b

brnrn

b b

t B

rn
t t dt

b

−−−

− −

= +

−
 =

−
  . 

 

Using this we can continue (5.11) and get  

 

( )
( )

 

( )

 ( )
1

1 1

1

1
1

1
b

b
rn b

b

t B

rnL t n
M

nL n n b

−
− −

= +

−
 +

−
  

 

( )
 

( )

1
1

1
1 2

1
1 1

b
brnc r

c c
n n n n 

−
− 

= − +  +  
 

. (5.13) 

 

(5.9), (5.10) and (5.13) prove boundedness in Case 1. 

Case 2. ( )0 1br B n  − . In this case  

 

  1 1 1brn rn B−  −  + . 

 

The third sum in (5.9) is empty; the rest of the proof does not change. # 

Theorem 5.1. For  )1,p   and integer 0k   define a vector 
n

nw R  by (1.12). 

If ( ),L K  = , 1  , then 
nw  is pL -close to  

 

( ) ( )1
k

kf t t= − . 

 

Proof. We need the following fact [1, P.149]: definition of interpolation operator is 

equivalent to  

 

( )( )  
1

1

p

np nu
w u n w

+
 = , 0 1u  . (5.14) 

 

Therefore in our case by using (5.13) we obtain  

 

( )( )  ( )1 ,k

npw u F nu n = + , 0 1u  . 

 

Let 
1

0
2

  , 1u   . Define  

 

 1nu
r

n

+
= . 

 

From the inequality  
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 1 1nu nu nu +  +  

 

we have 

 

1 1
u r u

n



   +  , 

 

if n  is sufficiently large. Hence, 

 

( )1r u o= + , n→ ; 
1

,r 


 
 
 

. 

 

This and Lemma 5.2 (a) imply 

 

 ( )  ( ) ( )1 , , 1 1F nu n F rn n u o+ = = − + , n→ , (5.15) 

 

uniformly in  ),1u  . 

Now let 0 u   . Then  

 

 1 1 1
0 2 1

nu nu
r

n n n
 

+ +
 =   +   , 

 

if n  is large enough. By Lemma 5.2 (b) 

 

 ( )  ( )1 , ,F nu n F rn n c+ =   for ( )0,u  . (5.16) 

 

Obviously,  

 

( )
 ( ) ( )

1
1

0,1
1 , 1

p

p
p

kk

np k L
f F nu n u du



 
 −  + − − 

 
  

 

( )  ( )
1 1

0 0

1 1 ,

p p
p pk ku du F nu n du

    
+ − + +   
   
  . 

 

By (5.15) - (5.16) this can be made as small as desired, by selecting first a small   and 

then a large n . # 

Next consider the function I  defined in (1.13). 
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Lemma 5.3. If ( ),L K  = , 1  , then for each ( )0,1   

a)  

 

 ( ) ( )( )
1

, 1 1 log 1I rn n o r r
r

 
= + − + 

 
, n→ , 

 

uniformly in 
1

,r 


 
 
 

 (the ( )1o  depends on  ), 

b)  

 

 ( ),I rn n c  

 

for ( 0,r  , where c  does not depend on  . 

Proof. a) If r   and  n t rn  , then  

 

   1 1 2t rn n n n n      −   

 

for a large n . By (1.10) 

 

( ) ( )( ), , 1 1 log
t t

G t n G n n o
n n

 
= = + 

 
 for  rn t n  , 

 

where ( )1o  does not depend on t . Hence, denoting  s rn= , 

 

 ( ) ( )( ) ( )( )
( )

1

1 ...1 1
, 1 1 log 1 1 log

n

n s
t s

s s nt
I rn n o o

n n n n − +
=

+
= + = +  

 

( )( )
( ) 1

1 !
1 1 log

1 ! n s

n
o

n s n − +
= +

−
. 

 

By Stirling’s formula [41, P.371], for each natural n  there exists ( ) ( )0,1n =   such 

that 

 

12! 2

n

n
n

n n e
e




 

=  
 

. 

 

So, 
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 ( ) ( )( )

( )

( )
( )
( )

12

11

12 1 1

2
1

, 1 1 log
1

2 1

n n

n

ss

s n s

n
n e

e
I rn n o

n s
s e n

e









−−

− − +

 
 
 = +
− 

−  
 

 

 

( )( )
( ) ( )

( )

11 2
1

12 12 11
1 1 log

1

n ss
s n

n sn
o e

n s

  −−
− − + −

−
 
 
 = +  

−   

 

 

( )( )
( ) ( )

1

2
2

11 1 1
1 1 log 1

12 12
12

n ss s s
o

sn n n n n
n

n

 
−

 
 −− −   

= + − + − + −     −    
 

. (5.17) 

 

Since  

 

 1rn s rn rn−  =  , 

 

we have 

 

( )1
s

r o
n
= + , ( )

1
1

s
r o

n

−
= +  uniformly in 

1
,r 


 
 
 

. 

 

Using the fact that 
1s

n

−
 is bounded and bounded away from zero,  

 

1 1 1 2

2

s
r r

n n n





−
 −   −   

 

for large n , we have the bounds 

 

( )
1

1 1 1
log

s
C

n n n


−
− 

 
 

, 

 

( )2 2

1 2

1n s n n 


−
. 

 

This and (5.17) prove part a). 

b) First consider the case  
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1bB
r

n


+
   

 

and write 

 

 ( )
( )

( )
( ) 

1
, 1

n

t rn

L t
I rn n

n n L n =

 − . 

 

From  

 

 1rn rn t n−     

 

we have  

 

1
1bB t

r
n n n
 −   , 

 

so by Lemma 5.1 and (5.12)  

 

 ( )
( ) ( )  

,

bn
b

t rn

M t
I rn n

n n n n 

−

=

 
  

 
  

 

( ) ( )   ( ) ( )

1 1

1

b n
bb b

t rn

M n M
t C

n n b n n   

−
−

=

=   
−

 . (5.18) 

 

The last bound holds by (5.4).  

Now let  

 

1
0 bB

r
n

+
  . 

 

Then for  

 

  1t rn −  

 

we have  

 
1bt rn B  +  
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and ( ) 1L t c . By Corollary 2.2, we have  

 

( )
1

1
, 1

n

t

G t n
n =

→ , 

 

so 

 

 ( ) ( ) ( )
  1

1 1

1 1
, , ,

rnn

t t

I rn n G t n G t n
n n

−

= =

 +   

 

( )

( )

( )

   
( ) ( )

1

1
2 2 3

1

11
1 1

rn

t

L t rn c
c c c

n n L n n n L n 

−

=

   −
 + +  + +     

  
 . (5.19) 

 

This is because ( )n , ( ) ( )n L n  are SV and  

 

( )n n → , ( ) ( )n n L n → . 

 

(5.18) and (5.19) prove b). # 

Theorem 5.2. For  )1,p   and integer 0k   define a vector 
n

nw R  by (1.13). 

If ( ),L K  = , 1  , then 
nw  is pL -close to  

 

( )
1

log 1

k

kf t t t
t

 
= − + 
 

. 

 

Proof. The proof is similar to that of Theorem 5.1, just replace Lemma 5.2 with Lemma 

5.3. # 

Now consider the function J  defined in (1.14). 

Lemma 5.4. Suppose ( ),L K  = , 1  . Then for each ( )0,1   

a)  

 ( ) ( )( )
1

, 1 1 logJ rn n o r
r

= + , n→ , 

 

uniformly in 
1

,r 


 
 
 

. 

b)  

 ( ),J rn n c  for ( 0,r  , 
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where c  does not depend on  . 

Proof. Obviously, 

 

 ( )
( ) ( )
( ) ( ) 

( )
( ) ( ) 

1 1
,

n n

t rn t rn

L t L n L t L
J rn n

n L n n n L n n = =

− −
= +   

 

 ( )
( )
( ) ( ) 

1
,

n

t rn

L t L
I rn n

n L n n=

−
= +  . 

 

Use here (5.6) to get 

 

 ( )  ( ) ( )( )
 

1
, , 1 1 1

n

t rn

J rn n I rn n o
n =

= + +   

 

 ( ) ( )( )
  1

, 1 1
n rn

I rn n o
n

− +
= + +  

 

(applying Lemma 5.3a)) 

 

( )( ) ( )( )( )
1

1 1 log 1 1 1 1 (1)o r r o r o
r

 
= + − + + + − + 

 
 

 

( )( )
1

1 1 logo r
r

= + . 

 

In all of the above the ( )1o  does not depend on r . 

b) In case 0 r    just use part b) of Lemma 5.3 instead of part a). # 

Theorem 5.3. For  )1,p   and integer 0k   define a vector 
n

nw R  by (1.14). 

If ( ),L K  = , 1  , then 
nw  is pL -close to  

 

( )
1

log

k

kf t t
t

 
=  
 

. 

 

Proof. Just replace Lemma 5.2 in the proof of Theorem 5.1 with Lemma 5.4. 
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6 ASYMPTOTIC DISTRIBUTION OF OLS ESTIMATORS 

 

The goal of this section is to prove asymptotic distribution of OLS estimators in 

(1.9). 

For the simple regression model  

 

( )t ty L t u = + + , 1,...,t n= , 

 

one version of the formulas for the OLS estimates ̂  and ̂  is (Section 3.1) [42] 

 

( )( ) ( )( )
1

2

1 1

ˆ
n n

t

t t

L t L u L t L 

−

= =

 
− = − − 

 
   (6.1) 

 

and  

 

( )ˆˆ u L   − = − − , (6.2) 

 

where  

 

1

1 n

t

t

u u
n =

=  , ( )
1

1 n

t

L L t
n =

=  . 

 

are the averages. 

The main result of this section is: 

Theorem 6.1. If Assumptions 1, 5 and 5.1 hold and, additionally, ( )K = , 

( )K = , ( ) ( )( )n o n = , then  

 

( )
( )

( ) ( ) ( )

2
ˆ

1 12
0,

1 127
ˆ

d

n

n

n
N

L n n

n


 




 

→

 
− 

 −    →     −  
− 

 

. 

 

We will prove this theorem later. First we start studying of convergence in distribution 

of  

 

1n

u
z

n
= , 

( ) ( ) ( )2
ˆ

n

L n n
z

n


 = −  
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which are part of ̂ , ̂ .  

Lemma 6.1. a) 
2

1 0,
3

d

n
n

z N


→

 
→  

 
. 

b) If ( )K = , ( )K =  and ( ) ( )( )n o n = , then 
2nz  admits the representation 

 

( )

( ) ( )
( )( )2

1

1 1 n

n t

t

o
z L t L u

n nL n n =

+
= −  

 

( )( ) ( )
1

1
, 1 1

n

t P

t

G t n u o
n n =

= + +  

(6.3) 

 

and  

 
2

2

2
0,

27

d

n
n

z N


→

 
→  

 
. (6.4) 

 

Proof. a) We have 

 

1

1 1 1 1

1 1 1
1

n n t n n

n t l l

t t l l t l

z u v v
n n n n n n= = = = =

= = =     

 

( )
1 1

1 1 1
1 1

n n

l t

t t

t
v n l v

nn n n= =

− 
= − + = − 

 
  . 

 

By Lemma 2.5 the sequence  

 

1 1 1
1,1 ,...,1n

n
w

n nn

− 
= − − 

 
 is 

2L -close to ( ) 1F x x= − . (6.5) 

 

Since ( )
1

2

0

1

3
F x dx = , statement a) follows from Theorem A. 

b) By Lemma 2.6 

 

( )( ) ( ) ( ) ( )( )
2 2 2

1

1
1 1

n

t

L t L L n n o
n


=

− = + . 

 

Combining this with (6.1), we get 

 



64 

 

( )

( ) ( )
( )( )2

1

1 1 n

n t

t

o
z L t L u

n nL n n =

+
= − . 

 

Adding and subtracting ( )L n  and using Corollary 2.3, we obtain 

 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )2

1 1

1 1 1 1n n

n t t

t t

o L t L n o L t L
z u u

L n n L n nn n n n = =

+ − + −
= +   

 

( )
( )

( )

1 1

1 1 1 1
,

n n

t t

t t

o o
G t n u u

n n n n= =

+ +
= +   

 

( )( )
( )

( )( )
1 1

11
, 1 , 1

n n

t t

t t

o
G t n u G t n u

n n n n= =

= + + +  . (6.6) 

 

Changing the order of summation, 

 

( )( ) ( )( )
1 1 1

1 1
, 1 , 1

n n n

t l

t l t

G t n u v G t n
n n n n= = =

+ = +    

 

( )
1

1 1
, 1

n

l

l

l
v I l n

nn=

 −  
= + −  

  
 . (6.7) 

 

The sequence ( ) ( )( )
1

1, ,..., ,I n I n n
n

 is 
2L -close to 

1
log 1t t

t
− +  (Theorem 5.2), so 

the sum of this sequence and the one in (6.5) by Lemma 2.7 
2L -close to ( )

1
logW t t

t
=

. Since ( )
1

2

0

2

27
W t dt = , by Theorem A the variable in (6.7) converges in distribution 

to 
22

0,
27

N
 

 
 

. Now (6.3) and (6.4) follow from (6.6). # 

Proof of Theorem 6.1. We know from Lemma 6.1 (b) that 

 

( ) ( ) ( )
22ˆ 0,

27

d

n

L n n
N

n

 
 

→

 
− →  

 
. 

 

By (6.2) and Corollary 2.3 
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( )
( )

( ) ( ) ( )ˆˆ
n n n L

u
n n n

  
   − = − −  

 

( ) ( )( )
( ) ( )1

ˆ1 1n

n L
n z o

n


  = − + −  

 

( ) ( )( )1 21 1n nn z o z= − + . 

 

By Lemma 6.1 this equals to ( )2 1n Pz o− + . This proves the theorem. # 
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7 MONTE-CARLO STUDY FOR OLS ESTIMATORS FOR 

REGRESSION WITH SLOWLY VARYING REGRESSOR 

 

In this section we will present some simulations in MatLab. 

We implement 
( )

( )ˆ
n

n

n


 − , 

( ) ( ) ( )ˆ
n

L n n

n


 −  for four types of slowly 

varying functions ( ) ( )logL t t= , ( ) ( )( )log logL t t= , ( )
( )

1

log
L t

t
= , 

( )
( )( )

1

log log
L t

t
=  and two types of coefficients 

2

1
ic

i
=  and 

( )
2

2

1
ic

i i
=

+
. The fit 

quickly improves as the number of iterations and the number of observations increases. 

These are shown in Figures 1-4 for ( )
( )

( )ˆ
n

a n
n


 = − , ( )

( ) ( ) ( )ˆL n n
b n

n


 = − , 

where ( ) ( )( )log logL t t= , numbers of iterations are equal to 1000 and 10000, the 

number of observations is equal to 300. Based on Theorem 5.1, we expect this to work 

for all types of slowly varying functions and any absolutely convergent coefficients. 

As you can see in these figures, ( )a n , ( )b n  data come from normal distribution, 

against the alternative hypothesis that the cumulative distribution function of the data 

is not from the normal distribution, MatLab program returned value of 0h =  indicates 

that test fails to reject the null hypothesis at significance level 5%. The cdf of ( )b n  is 

shown in Figure 5. 

 

 

Figure 1 – Empirical pdf of ( )300a  with 1000 number of iterations 



67 

 

 

 

Figure 2 – Empirical pdf of ( )300a  with 10000 number of iterations 

 

 

Figure 3 – Empirical pdf of ( )300b  with 1000 number of iterations 
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Figure 4 – Empirical pdf of ( )300b  with 10000 number of iterations 

 

 

Figure 5 – Empirical pdf of ( )300b  with 10000 number of iterations 
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CONCLUSION 

 

The dissertation considers: 

1) central limit theorems for quadratic forms of linear processes; 

2) a couple of new 
pL -approximable sequences; 

3) a model  

 

( )t ty L t u = + + , 1,...,t n= , 

 

with a slowly varying (SV) regressor, integrated errors (
1t t tu u v −= + , 2,...,t n= ) 

under the unit root and  tv  is a non-causal linear process, i.e. 
t i t i

i Z

v c e −



= . 

Assessment of the completeness of the aims of the work. All results are new 

and based on our own methods and tools. In this work we have: 

1) obtained convergence of some quadratic forms used in regression analysis. 

2) obtained central limit theorems for linear and quadratic forms.  

3) added a couple of sequences to the list of 
pL -approximable sequences 

contained in Mynbaev [16, P.322]. 

4) proved Uematsu’s result [4, P.10] on the asymptotic distribution of OLS 

estimations ̂  and ̂  under less restrictive conditions. 

5) done Monte-Carlo simulations for the asymptotic distribution of OLS 

estimations ̂  and ̂ . 

Therefore, the work objectives were completed. 

Suggestions on applications of the obtained results. The results obtained in this 

area can be used during the study of unit root test statistics, the problem of early 

detection of bubbles, and other statistical and econometrical problems. 

Assessment of scientific level of the work in comparison with the 

achievements in the scientific direction. The results obtained are on par with the best 

achievements of foreign colleagues and contribute to the study of statistics and 

econometrics. 
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